Respuesta :

Note: I'm assuming you mean that [tex]64=4^x[/tex].

Taking the logarithm gives:

[tex]\log{4^x} = \log{64}[/tex]

Using our rules of logarithms ([tex]\log{a^b} = b \log a[/tex]), we have:

[tex]x \log 4 = \log 64[/tex]

This corresponds to answer A.

Answer:

Option B is correct

[tex]\log_4 64 = x[/tex]

Step-by-step explanation:

using logarithmic rules:

[tex]\log a^b = b\log a[/tex]

[tex]\log_n m = \frac{\log m}{\log n}[/tex]

Given the equation:

[tex]64 = 4^x[/tex]

Take log both sides we have;

[tex]\log 64 = \log 4^x[/tex]

Apply the logarithmic rules:

[tex]\log 64 = x\log 4[/tex]

Divide both sides by log 4 we have;

[tex]\frac{\log 64}{\log 4}= x[/tex]

Again, apply the logarithmic rules:

[tex]\log_4 64 = x[/tex]

therefore, we get the given expression as a logarithmic equation is, [tex]\log_4 64 = x[/tex]