Respuesta :
We need to simplify it
[tex]\\ \tt\longmapsto \dfrac{3x^36xy^3}{(-3xy)^2}[/tex]
Apply
- (ab)^n=a^nb^n
- a^n+a^m=a^m+n
[tex]\\ \tt\longmapsto \dfrac{18x{3+1}y^{1+3}}{9x^2y^2}[/tex]
[tex]\\ \tt\longmapsto \dfrac{18x^4y^4}{9x^2y^2}[/tex]
- a^m/a^n=a^m-n
[tex]\\ \tt\longmapsto 2x^2y^2[/tex]
hope it helps
Answer:
[tex]\dfrac{3x^3y*6xy^3}{(-3xy)^2}=2x^2y^2[/tex]
Step-by-step explanation:
[tex]\dfrac{3x^3y*6xy^3}{(-3xy)^2}[/tex]
Numerator
Multiply the constants, and apply the exponent rule: [tex]a^b\cdot \:a^c=a^{b+c}[/tex]
[tex]3x^3y*6xy^3=(3*6)x^{(3+1)}y^{(1+3)}=18x^4y^4[/tex]
Denominator
Apply the exponent rule: [tex]\left(-a\right)^n=a^n,\:\quad \mathrm{if\:}n\mathrm{\:is\:even}[/tex]
[tex](-3xy)^2=(3xy)^2[/tex]
Apply the exponent rule: [tex]\quad \left(a\cdot \:b\right)^n=a^nb^n[/tex]
[tex](3xy)^2=3^2x^2y^2=9x^2y^2[/tex]
Therefore,
[tex]\dfrac{3x^3y*6xy^3}{(-3xy)^2}=\dfrac{18x^4y^4}{9x^2y^2}[/tex]
Factor 18 and cancel the common factor 9:
[tex]\implies \dfrac{18x^4y^4}{9x^2y^2}=\dfrac{9*2x^4y^4}{9x^2y^2}\\\\\\\implies \dfrac{9*2x^4y^4}{9x^2y^2}=\dfrac{2x^4y^4}{x^2y^2}[/tex]
Apply the exponent rule: [tex]\dfrac{x^a}{x^b}=x^{a-b}[/tex]
[tex]\implies \dfrac{2x^4y^4}{x^2y^2}=2x^2y^2[/tex]