Respuesta :
Finally...
(1-sin x )(1+sin x )
Now we have (1-sin(x)) (1+sin(x))
There is something call Expanded which is the way to write numbers by showing the value of each digit (google)
So let's us it to see what we find.
(1-sin(x)) (1+sin(x) that's equal 1-sin²(x)
We knew that 1-sin²(x) = cos²(x)
Answer : Cos²(x)
wow I did it guys :))
Hey I hope its help XD
Answer:
[tex](1-\sin x )(1+\sin x)=\cos^2x[/tex]
Step-by-step explanation:
Given : Expression [tex](1-\sin x )(1+\sin x)[/tex]
To find : Simplify the expression ?
Solution :
Step 1 - Write the expression,
[tex](1-\sin x )(1+\sin x)[/tex]
Step 2 - Applying identity, [tex](a+b)(a-b)=a^2-b^2[/tex]
[tex](1-\sin x )(1+\sin x)=1^2-\sin^2x[/tex]
[tex](1-\sin x )(1+\sin x)=1-\sin^2x[/tex]
Step 3 - Applying trigonometric identity, [tex]\sin^2x+\cos^2x=1[/tex]
[tex](1-\sin x )(1+\sin x)=\cos^2x[/tex]
Therefore, [tex](1-\sin x )(1+\sin x)=\cos^2x[/tex]