Respuesta :
basically you want to make the equation so that you have
x>something or x<something so basically solve for x or isolate x so
a+bx>cx-d
try to get all the x's on one side
subtract bx from both sides
a>cx-bx-d
add d to both sides
a+d>cx-bx
undistribute
a+d>(x)(c-b)
divide both sides by (c-b)
tada
so the solution is
[tex] \frac{a+d}{c-b} [/tex]>x or
x<[tex] \frac{a+d}{c-b} [/tex]
x>something or x<something so basically solve for x or isolate x so
a+bx>cx-d
try to get all the x's on one side
subtract bx from both sides
a>cx-bx-d
add d to both sides
a+d>cx-bx
undistribute
a+d>(x)(c-b)
divide both sides by (c-b)
tada
so the solution is
[tex] \frac{a+d}{c-b} [/tex]>x or
x<[tex] \frac{a+d}{c-b} [/tex]
a+ bx> cx -d
⇒ bx -cx > -a -d
⇒ x(b-c) > -(a+ d) (distributive property)
⇒ x > -(a+ d)/(b -c)
Final answer: x> -(a+ d)/(b -c)~
⇒ bx -cx > -a -d
⇒ x(b-c) > -(a+ d) (distributive property)
⇒ x > -(a+ d)/(b -c)
Final answer: x> -(a+ d)/(b -c)~