Respuesta :

In the first step i swapped the places of x and y
Ver imagen deldotsonp10udv

Answer:

[tex]f^{-1}(x)=\frac{3}{5}x+\frac{28}{5}[/tex]

Explanation:

The given equation is

[tex]5x - 17 = 11 + 3y[/tex]

We need to find the inverse of the function.

Step 1: Interchange x and y.

[tex]5y - 17 = 11 + 3x[/tex]

Step 2: Isolate y on left side.

Add 17 on both sides.

[tex]5y - 17+17= 11 + 3x+17[/tex]

[tex]5y=3x+28[/tex]

Divide both sides by 5.

[tex]y=\frac{3x+28}{5}[/tex]

[tex]y=\frac{3}{5}x+\frac{28}{5}[/tex]

Step 3: Substitute [tex]y=f^{-1}(x)[/tex].

[tex]f^{-1}(x)=\frac{3}{5}x+\frac{28}{5}[/tex]

Therefore, the inverse of the function is [tex]f^{-1}(x)=\frac{3}{5}x+\frac{28}{5}[/tex].