Respuesta :
Hey there, hope I can help!
[tex]\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides} [/tex]
[tex]2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)[/tex]
Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
[tex]x^2-2x-46=0[/tex]
Lets use the quadratic formula now
[tex]\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:} [/tex]
[tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}[/tex]
[tex]\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \ \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \ \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}[/tex]
Multiply the numbers 2 * 1 = 2
[tex]\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}[/tex]
[tex]2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \ \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} [/tex]
[tex]\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \ \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \ \left(-2\right)^2=2^2, 2^2 = 4[/tex]
[tex]\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \ \sqrt{4+184} \ \textgreater \ \sqrt{188} \ \textgreater \ 2 + \sqrt{188}[/tex]
[tex]\frac{2+\sqrt{188}}{2} \ \textgreater \ Prime\;factorize\;188 \ \textgreater \ 2^2\cdot \:47 \ \textgreater \ \sqrt{2^2\cdot \:47} [/tex]
[tex]\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \ \sqrt{47}\sqrt{2^2} [/tex]
[tex]\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \ \sqrt{2^2}=2 \ \textgreater \ 2\sqrt{47} \ \textgreater \ \frac{2+2\sqrt{47}}{2}[/tex]
[tex]Factor\;2+2\sqrt{47} \ \textgreater \ Rewrite\;as\;1\cdot \:2+2\sqrt{47}[/tex]
[tex]\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \ 2\left(1+\sqrt{47}\right) \ \textgreater \ \frac{2\left(1+\sqrt{47}\right)}{2}[/tex]
[tex]\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \ 1+\sqrt{47}[/tex]
Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.
[tex]\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \ \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \ \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}[/tex]
[tex]\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}[/tex]
[tex]2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \ 2-\sqrt{188} \ \textgreater \ \frac{2-\sqrt{188}}{2}[/tex]
[tex]\sqrt{188} = 2\sqrt{47} \ \textgreater \ \frac{2-2\sqrt{47}}{2} [/tex]
[tex]2-2\sqrt{47} \ \textgreater \ 2\left(1-\sqrt{47}\right) \ \textgreater \ \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \ 1-\sqrt{47}[/tex]
Therefore our final solutions are
[tex]x=1+\sqrt{47},\:x=1-\sqrt{47}[/tex]
Hope this helps!
[tex]\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides} [/tex]
[tex]2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)[/tex]
Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
[tex]x^2-2x-46=0[/tex]
Lets use the quadratic formula now
[tex]\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:} [/tex]
[tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}[/tex]
[tex]\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \ \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \ \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}[/tex]
Multiply the numbers 2 * 1 = 2
[tex]\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}[/tex]
[tex]2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \ \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} [/tex]
[tex]\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \ \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \ \left(-2\right)^2=2^2, 2^2 = 4[/tex]
[tex]\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \ \sqrt{4+184} \ \textgreater \ \sqrt{188} \ \textgreater \ 2 + \sqrt{188}[/tex]
[tex]\frac{2+\sqrt{188}}{2} \ \textgreater \ Prime\;factorize\;188 \ \textgreater \ 2^2\cdot \:47 \ \textgreater \ \sqrt{2^2\cdot \:47} [/tex]
[tex]\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \ \sqrt{47}\sqrt{2^2} [/tex]
[tex]\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \ \sqrt{2^2}=2 \ \textgreater \ 2\sqrt{47} \ \textgreater \ \frac{2+2\sqrt{47}}{2}[/tex]
[tex]Factor\;2+2\sqrt{47} \ \textgreater \ Rewrite\;as\;1\cdot \:2+2\sqrt{47}[/tex]
[tex]\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \ 2\left(1+\sqrt{47}\right) \ \textgreater \ \frac{2\left(1+\sqrt{47}\right)}{2}[/tex]
[tex]\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \ 1+\sqrt{47}[/tex]
Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.
[tex]\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \ \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \ \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}[/tex]
[tex]\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}[/tex]
[tex]2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \ 2-\sqrt{188} \ \textgreater \ \frac{2-\sqrt{188}}{2}[/tex]
[tex]\sqrt{188} = 2\sqrt{47} \ \textgreater \ \frac{2-2\sqrt{47}}{2} [/tex]
[tex]2-2\sqrt{47} \ \textgreater \ 2\left(1-\sqrt{47}\right) \ \textgreater \ \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \ 1-\sqrt{47}[/tex]
Therefore our final solutions are
[tex]x=1+\sqrt{47},\:x=1-\sqrt{47}[/tex]
Hope this helps!