Respuesta :
First of all the domain of the logarithm function is all real numbers such that x>0.
When you add 3
all real numbers such that x+3>3 or
the answer
B
all real number such that x>-3.
When you add 3
all real numbers such that x+3>3 or
the answer
B
all real number such that x>-3.
Answer:
Option B - All real numbers greater than -3.
Step-by-step explanation:
Given : Function [tex]y=\log_4(x+3)[/tex]
To find : What is the domain of function ?
Solution :
The domain is all values of x that make the expression defined.
Function [tex]y=\log_4(x+3)[/tex]
Applying logarithmic property,
[tex]y=\log_a x\Rightarrow a^y=x[/tex]
[tex]4^y=x+3[/tex]
We know that, exponent is always greater than 0 [tex]x^y> 0[/tex]
So, [tex]4^y>0[/tex]
i.e. [tex]x+3>0[/tex]
[tex]x>-3[/tex]
The domain of the function is [tex]x>-3[/tex]
i.e. All real numbers greater than -3.
Therefore, Option B is correct.