Use a graphing calculator and a system of equations to find the roots of the equation. x4 − 4x3 = 6x2 − 12x From least to greatest, what are the integral roots of the equation?

Respuesta :

The answer is -2 and 0

Answer:

Roots of equation: [tex](-\sqrt{3}+3) (0) (-2) (-\sqrt{3}-3 )[/tex]

Integral roots : -2,0

Step-by-step explanation:

We have given that equation is  [tex]x^4-4x^3 -6x^2+12x[/tex]

now, we solve the equation to find roots

[tex]x^4-4x^3 -6x^2+12x=0[/tex]

⇒[tex] (x) (x+2) (x^2-6x+6)[/tex]

we divide [tex]x^4-4x^3 -6x^2+12x[/tex] by [tex](x^2-6x+6)[/tex]

⇒[tex]-(-x+\sqrt{3}+3) (x+\sqrt{3}-3 ) (x) (x+2)[/tex]

we can clearly see the two roots through attached graph

From least to greatest : [tex](x+2) (x) -(-x+\sqrt{3}+3) (x+\sqrt{3}-3 )[/tex]

Roots of equation: [tex](-\sqrt{3}+3) (0) (-2) (-\sqrt{3}-3 )[/tex]

Integral roots : -2,0

Ver imagen DodieZollner