What values of c and d make the equation true?
c = 2, d = 2
c = 2, d = 4
c = 6, d = 2
c = 6, d = 4

Answer:
c=6 and d=2 makes the equation true
Step-by-step explanation:
[tex]\sqrt[3]{162x^cy^5} = 3x^2y(\sqrt[3]{6y^d})[/tex]
plug in c=2 and check
[tex]\sqrt[3]{162x^2y^5}[/tex]
We cannot simplify cuberoot (x^2)
So c=2 does not works
Lets try with c=6 and d=2
[tex]\sqrt[3]{162x^6y^5}[/tex]
Cuberoot(x^6) = x^2
cuberoot (y^5)= ycuberoot (y^2)
[tex]\sqrt[3]{162x^6y^5} = 3x^2y(\sqrt[3]{6y^2})[/tex]
So c=6 and d=2 makes the equation true