Respuesta :

Write the equation of this circle in standard form:  (x-h)^2 + (y-k)^2 = r^2,
where (h,k) represents the center of the circle.

We must use the "complete the square" approach twice here:

X^2 + y^2 – 10x + 6y = 15

Rewrite this as x^2 - 10x            + y^2 + 6y          =   15
Complete the square of x^2 - 10x:

                        x^2 - 10x + 25  - 25

Complete the square of y^2 + 6y:

                                                     y^2 + 6y + 9       - 9

Then rewrite 
X^2 + y^2 – 10x + 6y = 15 as

                   x^2 - 10x + 25 + y^2 + 6y + 9     = 15 + 25 + 9

Or as             (x-5)^2   + (y+3)^2  =  49

Then the equation of the circle in standard form is

                         (x-5)^2 + (y+3)^2 = 7^2.

The center of this circle is at (5,-3), and its radius is 7.


[tex]x^2 + y^2 - 10x + 6y = 15 [/tex]
Ver imagen Аноним