Respuesta :
[tex]\tan A=\frac{\sin A}{\cos A}[/tex]
Proof: [tex]\sin\div\cos=\frac{o}h\div\frac{a}h=\frac{o}h\times\frac{h}a=\frac{oh}{ha}=\frac{o}a=\tan[/tex]
[tex]\cos A=0.352,\ \sin A=0.936[/tex]
[tex]\tan A=\frac{0.936}{0.352}[/tex]
[tex]\boxed{\tan A=2.65\overline{90}}[/tex] (round as needed)
Proof: [tex]\sin\div\cos=\frac{o}h\div\frac{a}h=\frac{o}h\times\frac{h}a=\frac{oh}{ha}=\frac{o}a=\tan[/tex]
[tex]\cos A=0.352,\ \sin A=0.936[/tex]
[tex]\tan A=\frac{0.936}{0.352}[/tex]
[tex]\boxed{\tan A=2.65\overline{90}}[/tex] (round as needed)
Answer:
tanA=2.659
Step-by-step explanation:
We are given cosA=0.352 and sinA=0.936
We have to find the value of tanA
We know the formula for tanA
tanA=[tex]\dfrac{sinA}{cosA}[/tex]
Hence, tanA= [tex]\dfrac{0.936}{0.352}[/tex]
tanA=2.659
Hence, value for tanA is:
2.659