The graph of a linear function passes through the points (2, 4) and (8, 10).

a) The function is y=
x+2
.

b) The graph passes through the point (-2, )

Respuesta :

[tex]\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ 2}}\quad ,&{{ 4}})\quad % (c,d) &({{ 8}}\quad ,&{{ 10}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{10-4}{8-2}[/tex]

[tex]\bf \stackrel{\textit{point-slope form}}{y-{{ y_1}}={{ m}}(x-{{ x_1}})}\qquad \begin{array}{llll} \textit{plug in the values for } \begin{cases} y_1=4\\ x_1=2\\ m=\boxed{?} \end{cases}\\ \textit{and solve for "y"} \end{array}[/tex]