Respuesta :
Answer-
[tex]The \ inverse \ of \ (x-4)^{2}-\frac{2}{3} =6y-12 \ is \ y= 4\pm \sqrt{6x-\frac{34}{3}}[/tex]
Solution-
The given function,
[tex](x-4)^{2}-\frac{2}{3} =6y-12[/tex]
The inverse of a function normally means switching the role of the variables. ( y becomes the input or independent variable, and x becomes the output or the dependent variable)
Switching x and y, the function becomes,
[tex](y-4)^{2}-\frac{2}{3} =6x-12[/tex]
[tex]\Rightarrow (y-4)^{2}= 6x-12 +\frac{2}{3}=6x-\frac{34}{3}[/tex]
[tex]\Rightarrow (y-4)= \pm \sqrt{6x-\frac{34}{3}}[/tex]
[tex]\Rightarrow y= 4\pm \sqrt{6x-\frac{34}{3}}[/tex]
The inverse of a function is its opposite
The inverse of the equation is y = 4 + [tex]\sqrt{[/tex]18x-34
The equation is given as:
(x-4)^2-2/3=6y-12
Swap the positions of x and y
(y-4)^2-2/3=6x-12
Multiply through by 3
(y-4)^2-2=18x-36
Add 2 to both sides
(y-4)^2=18x-34
Take the square roots of both sides
[tex]y-4=\sqrt{18x-34}[/tex]
y-4=[tex]\sqrt{[/tex]18x-34
Add 4 to both sides
y = 4 + [tex]\sqrt{[/tex]18x-34
Hence, the inverse of the equation is y = 4 + [tex]\sqrt{[/tex]18x-34
Read more about inverse equations at:
https://brainly.com/question/8120556