In "Triangle" ABC, AB = x, BC = y, and CA = 2x. A similarity transformation with a scale factor of 0.5 maps "Triangle" ABC to "Triangle" MNO, such that vertices M, N, and O correspond to A, B, and C, respectively. If OM = 5, what is AB?

A.AB = 2.5
B.AB = 10
C.AB = 5
D.AB = 1.25
E.AB = 2

Respuesta :

C is your answer
I hope that helps

Answer:

The correct option is C.) AB = 5

Step-by-step explanation:

the diagram of given triangle is shown in figure-1

M, N and O correspond to A , B and C respectively.

and also given that triangle MNO is 0.5 times of triangle ABC

so, MN =(0.5)AB , NO = (0.5)BC and MO =(0.5)AC

then  

      MO =(0.5)AC

       Put OM = 5

        5 =(0.5)AC

   Divide both the sides by 0.5,

                       [tex]\frac{5}{0.5}=AC[/tex]

                   10 = AC

If AB = x and AC = 2x

                  AC = 2x

                   10 = 2x

                  [tex]\frac{10}{2}=x[/tex]

                    5  = x

since  AB = x the AB = 5

 hence, correct option is C.) AB = 5