Answer:
[tex]\log_{2}128=7[/tex]
[tex]\boxed{\begin{array}{c}\textsf{Logarithmic Form}\\\\\log_{b}a=x\end{array}} \rightarrow \boxed{\begin{array}{c}\textsf{Exponential Form}\\\\b^x=a\end{array}}[/tex]
Step-by-step explanation:
To write the exponential equation 2⁷ = 128 in logarithmic form, we can use the following rule:
[tex]\boxed{\begin{array}{c}\underline{\textsf{Logarithmic Rule}}\\\\\log_ab=c \iff a^c=b\end{array}}[/tex]
In this case:
Therefore, the logarithmic form of 2⁷ = 128 is:
[tex]\LARGE\boxed{\boxed{\log_{2}128=7}}[/tex]
[tex]\hrulefill[/tex]
To express "Log base b of a equals x" mathematically, it would be written as:
[tex]\log_{b}a=x[/tex]
Here, b is the base of the logarithm, a is the argument of the logarithm, and x is the exponent to which the base b must be raised to obtain the value a. So, in exponent form it would be:
[tex]b^x=a[/tex]
[tex]\boxed{\begin{array}{c}\textsf{Logarithmic Form}\\\\\log_{b}a=x\end{array}} \rightarrow \boxed{\begin{array}{c}\textsf{Exponential Form}\\\\b^x=a\end{array}}[/tex]