Answer:
[tex]3^2=9 \implies \boxed{\log_{3}9=2}[/tex]
[tex]4^3=64 \implies \boxed{\log_{4}64=3}[/tex]
[tex]2^7=128 \implies \boxed{\log_{2}128=7}[/tex]
Step-by-step explanation:
To write the given exponential equations in logarithmic form, we can use the following rule:
[tex]\boxed{\begin{array}{c}\underline{\textsf{Logarithmic Rule}}\\\\a^c=b \iff \log_ab=c\end{array}}[/tex]
For the exponential equation 3² = 9:
Therefore, the logarithmic form is:
[tex]\Large\boxed{\boxed{\log_{3}9=2}}[/tex]
For the exponential equation 4³ = 64:
Therefore, the logarithmic form is:
[tex]\Large\boxed{\boxed{\log_{4}64=3}}[/tex]
For the exponential equation 2⁷ = 128:
Therefore, the logarithmic form is:
[tex]\Large\boxed{\boxed{\log_{2}128=7}}[/tex]