contestada

Use the given endpoint R and midpoint M of RS to find the coordinates of the other endpoint S. R(3,4), M(3,-2)

Respuesta :

[tex]\bf \textit{middle point of 2 points }\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) R&({{ 3}}\quad ,&{ 4})\quad % (c,d) &({{ x}}\quad ,&{{ y}}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)=(3,-2)\\\\ -------------------------------\\\\[/tex]

[tex]\bf \left(\cfrac{{{ x}} + {{ 3}}}{2}\quad ,\quad \cfrac{{{ y}} + {{ 4}}}{2} \right)=(3,-2)\implies \begin{cases} \cfrac{x+3}{2}=3\\\\ x+3=6\\ \boxed{x=3}\\ ----------\\ \cfrac{y+4}{2}=-2\\\\ y+4=-4\\ \boxed{y=-8} \end{cases}[/tex]