Respuesta :

the factors are (5b - 1)(5b + 1)(2b + 3)
these are the 3 dimensions in terms of b

Answer: The dimensions are,

(5b+1) × (5b-1) × (2b+3)

Step-by-step explanation:

Here, the given volume of the box,

[tex]V=50b^3 + 75b^2 - 2b - 3[/tex]

[tex]=25b^2(2b+3)-2b-3[/tex]

[tex]=25b^2(2b+3)-1(2b+3)[/tex]

[tex]=(25b^2-1)(2b+3)[/tex]

[tex]=((5b)^2-(1)^2)(2b+3)[/tex]

[tex]=(5b+1)(5b-1)(2b+3)[/tex]    ( a² - b² = (a+b)(a-b) )

[tex]\implies V=(5b+1)\times (5b-1)\times (2b+3)[/tex].

Since, the volume of a rectangular box is,

V = l × w × h

Where l, w and h are the dimensions of the box.

By comparing,

The dimensions of the box are (5b+1) × (5b-1) × (2b+3)