Respuesta :

check the picture below.

so.. simply, use the distance formula, to get their length an add them up, and that's the perimeter of the polygon.


[tex]\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ -1}}\quad ,&{{ 2}})\quad % (c,d) &({{ 2}}\quad ,&{{ 4}})\\ &({{ 2}}\quad ,&{{ 4}})\quad % (c,d) &({{ 3}}\quad ,&{{ -2}})\\ &({{ 3}}\quad ,&{{ -2}})\quad % (c,d) &({{ -2}}\quad ,&{{ -3}})\\ &({{ -2}}\quad ,&{{ -3}})\quad % (c,d) &({{ -1}}\quad ,&{{ 2}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}[/tex]

[tex]\bf -------------------------------\\\\ d=\sqrt{[2-(-1)]^2+(4-2)^2}\implies d=\sqrt{(2+1)^2+(2)^2} \\\\\\ d=\sqrt{3^2+2^2}\implies \boxed{d=\sqrt{13}}\\\\ -------------------------------\\\\ d=\sqrt{(3-2)^2+(-2-4)^2}\implies d=\sqrt{1^2+(-6)^2}\implies \boxed{d=\sqrt{37}}\\\\ -------------------------------\\\\ d=\sqrt{(-2-3)^2+[-3-(-2)]^2}\implies d=\sqrt{(-5)^2+(-3+2)^2} \\\\\\ d=\sqrt{(-5)^2+(-1)^2}\implies \boxed{d=\sqrt{26}}[/tex]

[tex]\\\\ -------------------------------\\\\ d=\sqrt{[-1-(-2)]^2+[2-(-3)]^2}\implies d=\sqrt{(-1+2)^2+(2+3)^2} \\\\\\ d=\sqrt{(1)^2+(5)^2}\implies \boxed{d=\sqrt{26}}[/tex]

so, those are their lengths, sum them all up, that's the polygon's perimeter.
Ver imagen jdoe0001