Respuesta :

Answer: [tex]\frac{x^2\sqrt{x}}{3}[/tex]

Step-by-step explanation:

Here the given expression is, [tex]\sqrt{\frac{2x^5}{18} }[/tex]

= [tex]\sqrt{\frac{x^5}{9} }[/tex]

= [tex]\sqrt{\frac{x^5}{9} }[/tex]

= [tex]\sqrt{\frac{x^4.x^1}{9} }[/tex]  (because [tex]x^{m+n}= x^m.x^n[/tex] )

=[tex]\frac{x^2\sqrt{x} }{3}[/tex]

Thus,[tex]\sqrt{\frac{2x^5}{18} }[/tex] =[tex]\frac{x^2\sqrt{x} }{3}[/tex]


Equivalent expressions are expressions with equal values

The equivalent expression of [tex]\sqrt{\frac{2x^5}{18}}[/tex]is [tex]\frac{x^2\sqrt{ x}}{3}[/tex]

The expression is given as:

[tex]\sqrt{\frac{2x^5}{18}}[/tex]

Divide 2 and 18, by 2

[tex]\sqrt{\frac{2x^5}{18}} = \sqrt{\frac{x^5}{9}}[/tex]

Take the square root of 9

[tex]\sqrt{\frac{2x^5}{18}} = \frac{\sqrt{x^5}}{3}[/tex]

Expand x^5 as x^4 * x

[tex]\sqrt{\frac{2x^5}{18}} = \frac{\sqrt{x^4 * x}}{3}[/tex]

Take the square root of x^4

[tex]\sqrt{\frac{2x^5}{18}} = x^2\frac{\sqrt{ x}}{3}[/tex]

Rewrite as:

[tex]\sqrt{\frac{2x^5}{18}} = \frac{x^2\sqrt{ x}}{3}[/tex]

Hence, the equivalent expression of [tex]\sqrt{\frac{2x^5}{18}}[/tex]is [tex]\frac{x^2\sqrt{ x}}{3}[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/2972832