Respuesta :

[tex] \frac{ 2j^{2} }{ 3^{4} } [/tex]
SQRT each individual bit: 4 and[tex] j^{4} [/tex] and 9 and [tex] k^{8} [/tex]

Answer:

Option (4) is correct.

An equivalent expression to the given expression   [tex]\sqrt{\frac{4j^4}{9k^8}}[/tex] is [tex]\frac{2j^2}{3k^4}[/tex]

Step-by-step explanation:

Given expression  [tex]\sqrt{\frac{4j^4}{9k^8}}[/tex]

We have to choose an equivalent expression to the given expression   [tex]\sqrt{\frac{4j^4}{9k^8}}[/tex]

Consider the given expression  [tex]\sqrt{\frac{4j^4}{9k^8}}[/tex]

Apply radical rule,

[tex]\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}[/tex]

[tex]=\frac{\sqrt{4}\sqrt{j^4}}{\sqrt{9}\sqrt{k^8}}[/tex]

[tex]\mathrm{Apply\:radical\:rule\:}\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b},\:[/tex]

[tex]\sqrt{4j^4}=\sqrt{4}\sqrt{j^4}[/tex]

[tex]\sqrt{9k^8}=\sqrt{9}\sqrt{k^8}[/tex]

We have,

[tex]=\frac{\sqrt{4}\sqrt{j^4}}{\sqrt{9}\sqrt{k^8}}[/tex]

[tex]=\frac{2\sqrt{j^4}}{3\sqrt{k^8}}[/tex]

[tex]\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^m}=a^{\frac{m}{n}}[/tex]

[tex]=\frac{2j^2}{3k^4}[/tex]

Thus, An equivalent expression to the given expression   [tex]\sqrt{\frac{4j^4}{9k^8}}[/tex] is [tex]\frac{2j^2}{3k^4}[/tex]