Which expression is equivalent to 4√81/16a^8b^12c^16?

The equivalent expression of [tex]\sqrt[4]{\frac{81}{16}a^8b^{12}c^{16}}[/tex] is [tex]\frac{3}{2}(a^2b^3c^4)[/tex]
The expression is given as:
[tex]\sqrt[4]{\frac{81}{16}a^8b^{12}c^{16}}[/tex]
Take the 4th root of 81 and 16
[tex]\frac{3}{2}\sqrt[4]{a^8b^{12}c^{16}}[/tex]
Apply the law of indices on the above expression
[tex]\frac{3}{2}(a^{8/4}b^{12/4}c^{16/4}}[/tex]
Evaluate
[tex]\frac{3}{2}(a^2b^3c^4)[/tex]
Hence, the equivalent expression of [tex]\sqrt[4]{\frac{81}{16}a^8b^{12}c^{16}}[/tex] is [tex]\frac{3}{2}(a^2b^3c^4)[/tex]
Read more about equivalent expression at:
https://brainly.com/question/2972832
#SPJ1