We can find the length of FG using the Distance Formula:

FG = (3 - 1)^2 + (-1 - 3)^2
Which formula also represents the length of FG?
A) FG = 4 + 2
B) FG = (4 + 2)^2
C) FG = (4 - 2)^2
D) FG^2 = 4^2 + 2^2

Respuesta :

also, FG=(2)^2+(-4)^2
FG=4+16
FG=20
so see which ones end up with 20

not A
not B
not C
D is the answer

Answer:   D. [tex]FG^2 = 4^2 + 2^2[/tex]

Step-by-step explanation:

Given: We can find the length of FG using the Distance Formula:

[Distance formula to find length of line from point [tex](x_1,y_1)[/tex] to point [tex](x_2,y_2[/tex] is given by :-

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2})\\\\\Rightarrow d^2=(x_2-x_1)^2+(y_2-y_1)^2[/tex]]

[tex]FG^2 =(3 - 1)^2 + (-1 - 3)^2[/tex]

Since, [tex]3-1=2[/tex] and [tex]-1-3=-(1+3)=-4[/tex]

Therefore,  [tex]FG^2 =(2)^2 + (-4)^2=2^2+((4)(-1))^2=2^2+4^2(-1)^2=2^2+4^2[/tex]

Hence, the formula also represents the length of FG is [tex]FG^2 = 4^2 + 2^2[/tex].