Respuesta :

given that f(x)=2sin(x+π), the standard form of sine function is y=A=sin(Bx+C), with:
A=amplitude
2π/B=period
C/B=phase-shift
A=2=amplitude
B=1
period=2π/B=2π/1=2π
C=2π/1=2π


Answer:

Amplitude =2 ,

Time period =   [tex]\frac{2\pi }{1}[/tex].

Phase shift =  π.

Step-by-step explanation:

Given :  f(x) = 2 sin(x + π) − 4.

To find : What are the amplitude, period, phase shift, and midline.

Solution : We have given that f(x) = 2 sin(x + π) − 4.

Standard form of sine function : y=Asin(Bx+C) + D.

Where, A = amplitude , Time period =  [tex]\frac{2\pi }{B}[/tex],  C = phaseshift

Midline , D = vertical shift.

On comparing

amplitude =2 ,

Time period =   [tex]\frac{2\pi }{x}[/tex].

Phase shift =  π.

Therefore, amplitude =2 ,

Time period =   [tex]\frac{2\pi }{1}[/tex].

Phase shift =  π.