Respuesta :

so hmmm those are the vertices, check the picture below

thus

[tex]\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ -3}}\quad ,&{{ 7}})\quad % (c,d) B&({{ -6}}\quad ,&{{ -1}})\\ B&({{ -6}}\quad ,&{{ -1}})\quad % (c,d) C&({{ 9}}\quad ,&{{ -1}})\\ C&({{ 9}}\quad ,&{{ -1}})\quad % (c,d) A&({{ -3}}\quad ,&{{ 7}})\\ \end{array}\ % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\ -----------------------------\\\\[/tex]

[tex]\bf AB=\sqrt{[-6-(-3)]^2+[-1-7]^2}\implies AB=\sqrt{9+64} \\\\\\ \boxed{AB=\sqrt{73}} \\\\\\ BC=\sqrt{[9-(-6)]^2+[-1-(-1)]^2}\implies BC=\sqrt{225} \\\\\\ \boxed{BC=15} \\\\\\ CA=\sqrt{[9-(-3)]^2+[-1-7]^2}\implies CA=\sqrt{144+64} \\\\\\ \boxed{CA=4\sqrt{13}}[/tex]

thus, the perimeter of △ABC is AB + BC + CA
Ver imagen jdoe0001