lukyo
contestada

Compute the limit:

lim (tan x – tan a)/tan(x – a)
x → a

without L'Hospital's Rule.

=====

Take this seriously. Jokes and spam will be reported right away.

Respuesta :

So you can actually use a couple trig identities
tan(x-a) =(tan x-tan a)/(1+tan x*tan a)
From there, easy!
(tan x-tan a)/(tan x-tan a)/(1+tan x*tan a)
1/1/(1+tan x*tan a)
which is
(1+tanx*tana)
1+tan^2a
sec^2 a
typo, forgot the 1/1
Nayefx

Answer:

[tex] \displaystyle \sec ^{2} (a) [/tex]

Step-by-step explanation:

we are given a limit

[tex] \displaystyle \lim_{x \to a} \frac{ \tan(x) - \tan(a) }{ \tan(x - a) } [/tex]

and said to compute without L'Hopitâl rule

if we substitute a for x directly we'd get

[tex] \displaystyle \frac{ \tan(a) - \tan(a) }{ \tan(a - a) } [/tex]

[tex] \displaystyle \: \frac{0}{0} [/tex]

which is indeterminate

so we have to do it differently

recall trigonometric indentity

[tex]\sf \displaystyle \tan(A\pm B)=\dfrac{\tan(A)\pm \tan(B)}{1\mp \tan(A)\tan(B)}[/tex]

using the identity we get

[tex] \displaystyle \lim_{x \to a} \frac{ \tan(x) - \tan(a) }{ \dfrac{\tan(x) - \tan(a)}{1 + \tan(x)\tan(a)}} [/tex]

simplify complex fraction:

[tex] \sf \displaystyle \lim_{x \to a} \cancel{\tan(x) - \tan(a)} \times \frac{1 + \tan(x) \tan(a) }{ \cancel{\tan(x) - \tan(a) } }[/tex]

[tex] \displaystyle \lim_{x \to a} 1 + \tan(x) \tan(a) [/tex]

now we can substitute a for x:

[tex] \displaystyle 1 + \tan(a) \tan(a) [/tex]

simplify multiplication:

[tex] \displaystyle 1 + \tan ^{2} (a)[/tex]

recall trigonometric indentity:

[tex] \displaystyle \sec ^{2} (a) [/tex]