Answer:
31.0 m/s
Explanation:
Given:
[tex]\vec a=7.0 \ m/s^2\\\\t=4.0 \ s\\\\\vec v_0 = 3.0 \ m/s[/tex]
Find:[tex]\vec v_f=?? \ m/s[/tex]
[tex]\boxed{\left\begin{array}{ccc}\text{\underline{The 4 Kinematic Equations:}}\\\\1. \ \vec v_f=\vec v_0+\vec at\\\\2. \ \Delta \vec x=\frac{1}{2}(\vec v_f-\vec v_0)t\\\\3. \ \Delta \vec x=\vec v_0t+\frac{1}{2}\vec at^2\\\\ 4. \ \vec v_f^2=\vec v_0^2+2\vec a \Delta \vec x \end{array}\right}[/tex]
Using the first kinematic equation:
[tex]\vec v_f=\vec v_0+\vec at\\\\\Longrightarrow \vec v_f=3.0+(7.0)(4.0)\\\\\Longrightarrow \vec v_f=3.0+28.0\\\\\therefore \boxed{\boxed{\vec v_f=31.0 \ m/s}}[/tex]
Thus, the objects final velocity is found.