The length of the hypotenuse of a 30°-60°-90° triangle is 11. What is the perimeter?
A. 11/2+33/2 square root 3
B. 33/2+11/2 sqaure root 3
C. 11 + 33square root 3
D. 33 + 11square root 3

Respuesta :

Answer:  B    P= [tex]\frac{33}{2}[/tex] + [tex]\frac{11}{2}\sqrt{3}[/tex]

Step-by-step explanation:

Given:

h=11

30-60-90 triangle

Find:

Perimeter - all the sides added up

Rules:

In a 30-60-90 triangle, the ratio for a the sides are as follows:

Short leg, across from 30 = x

long leg across from 60 = x√3

hypotenuse, acrosss from 90 = 2x

If h=11, from the rules above

h=2x                  >substitute h=11

11 = 2x               >divide both sides by 2

x =  11/2

short leg = x           >from rules

short leg = x/2

long leg = x√3          >from rules

long leg =  [tex]\frac{11}{2}\sqrt{3}[/tex]

Perimeter = h  +short leg +  long leg

Perimeter = 11 + [tex]\frac{11}{2}[/tex] + [tex]\frac{11}{2}\sqrt{3}[/tex]

Perimeter = [tex]\frac{33}{2}[/tex] + [tex]\frac{11}{2}\sqrt{3}[/tex]

B

Answer:

[tex]\textsf{B.} \quad \dfrac{33}{2}+\dfrac{11}{2}\sqrt{3}[/tex]

Step-by-step explanation:

A 30-60-90 triangle is a special right triangle where the measures of its angles are 30°, 60°, and 90°.

In a 30-60-90 triangle, the lengths of its sides are in the ratio 1 : √3 : 2.

Therefore, the formula for the ratio of the sides is x : x√3 : 2x where:

  • x is the shortest side opposite the 30° angle.
  • x√3 is the side opposite the 60° angle.
  • 2x is the longest side (hypotenuse) opposite the right angle.

If the hypotenuse of the triangle is 11 units, then 2x = 11.

Solving for x:

[tex]\implies \dfrac{2x}{2} = \dfrac{11}{2}[/tex]

[tex]\implies x=\dfrac{11}{2}[/tex]

As the side opposite the 30° angle is equal to x, then the length of this side is 11/2 units.

This means that the side opposite the 60° angle is:

[tex]\implies x\sqrt{3}=\dfrac{11}{2}\sqrt{3}[/tex]

The perimeter of a two-dimensional shape is the sum of the lengths of all the sides of the shape. Therefore, the perimeter of the 30-60-90 triangle is:

[tex]\begin{aligned}\textsf{Perimeter}&=11+\dfrac{11}{2}+\dfrac{11}{2}\sqrt{3}\\\\&=\dfrac{22}{2}+\dfrac{11}{2}+\dfrac{11}{2}\sqrt{3}\\\\&=\dfrac{22+11}{2}+\dfrac{11}{2}\sqrt{3}\\\\&=\dfrac{33}{2}+\dfrac{11}{2}\sqrt{3}\end{aligned}[/tex]

Learn more about 30-60-90 triangles here:

https://brainly.com/question/30153820