(6-10) estimate the endurance strength of a 1.5-in-diameter rod of aisi 1040 steel having a machined finish and heat-treated to a tensile strength of 110 ksi, loaded in rotating bending.

Respuesta :

A 1.5-in. rod grade aisi 1040 steel with a sanded finish and a strength properties of 110 ksi, subjected in rotational bending, is given the endurance strength kakbkckdkekfSe′ in accordance with the query.

Explain what heat is :

Heat is the result of the movement of kinetic energy within a material or an item, or from an alternative fuel to a material or an object. Irradiation, conduction, and convection are the three mechanisms through which such energy can be transferred.

Briefing :

d=1.5 in,Sut

​=110 kpsi

Eq. (6-8):         S_{e}^{\prime}=0.5(110)=55  kpsiSe′​

=0.5(110)=55 kpsi

Table 6-2:        a=2.70, b=-0.265a=2.70,b=−0.265

Eq. (6-19):       k_{a}=a S_{u t}^{b}=2.70(110)^{-0.265}=0.777ka​ =aSutb

​ =2.70(110)

−0.265

=0.777

Since the loading situation is not specified, we’ll assume rotating bending or torsion so Eq. (6-20) is applicable. This would be the worst case.

k_{b}=0.879 d^{-0.107}=0.879(1.5)^{-0.107}=0.842kb

​ =0.879d

−0.107

=0.879(1.5)

−0.107

=0.842

Eq. (6-18):      S_{e}=k_{a} k_{b} S_{e}^{\prime}=0.777(0.842)(55)=36.0  kpsiSe

​ =ka​kbSe′​

=0.777(0.842)(55)=36.0 kpsi

Eq. (6-8): S_{e}^{\prime}= \begin{cases}0.5 S_{u t} & S_{u t} \leq 200 kpsi (1400 MPa ) \\ 100 kpsi & S_{u t}>200 kpsi \\ 700 MPa & S_{u t}>1400 MPa \end{cases}Se′

​ =  0.5S ut100kpsi700MPa Sut ≤200kpsi(1400MPa)S ut >200kpsiSut​ >1400MPa

​Eq. (6-19): k_{a}=a S_{u t}^{b}k

a =aS utb

​Eq. (6-20): k_{b}= \begin{cases}(d / 0.3)^{-0.107}=0.879 d^{-0.107} & 0.11 \leq d \leq 2 \text { in } \\ 0.91 d^{-0.157} & 2<d \leq 10 \text { in } \\ (d / 7.62)^{-0.107}=1.24 d^{-0.107} & 2.79 \leq d \leq 51 mm \\ 1.51 d^{-0.157} & 51<d \leq 254 mm \end{cases}kb

​=

 (d/0.3) −0.107 =0.879d

−0.107 0.91d −0.157 (d/7.62) −0.107 =1.24d −0.107 1.51d −0.157 0.11≤d≤2 in 2<d≤10 in 2.79≤d≤51mm51<d≤254mm

​Eq. (6-18): S_{e}=k_{a} k_{b} k_{c} k_{d} k_{e} k_{f} S_{e}^{\prime}Se

=kakbkckdkekfSe′

To know more about Heat visit :​

https://brainly.com/question/13002129

#SPJ4