The other coordinate is x = [tex]\sqrt{3} /2[/tex].
Given:
A point (x, y) is on the unit circle. If its y-coordinate is 1/2 and the point lies in Quadrant I.
we know that :
In unit circle radius r = 1.
[tex]x^{2} +y^{2} = r^{2}[/tex]
[tex]x^{2} +(1/2)^2 = 1^2[/tex]
[tex]x^{2} +1^2/2^2 = 1[/tex]
[tex]x^2 + 1/4 = 1[/tex]
[tex]x^{2} = 1-1/4[/tex]
[tex]x^{2} = 4- 1 / 4[/tex]
[tex]x^{2} =3/4[/tex]
[tex]x =[/tex] ±[tex]\sqrt{3/4}[/tex]
[tex]x =[/tex] ±[tex]\sqrt{3} /2[/tex]
since x is in first quadrant it has only positive value
[tex]x =\sqrt{3} /2[/tex].
Therefore the other coordinate is x = [tex]\sqrt{3} /2[/tex].
Learn more about the unit circle here:
https://brainly.com/question/11987349
#SPJ4