An architect designs a rectangular flower garden such that the width is exactly two-thirds of the length. If 400 feet of antique picket fencing are to be used to enclose the garden, find
the dimensions of the garden.

Respuesta :

Answer:

[tex]10\sqrt{6}[/tex] feet by [tex]\frac{20}{3}\sqrt{6}[/tex] ft

Step-by-step explanation:

If the length is [tex]l[/tex], then the width is [tex]\frac{2}{3}l[/tex].

Using the formula for the area of a rectangle,

[tex]l \cdot \frac{2}{3}l=400 \\ \\ \frac{2}{3}l^2=400 \\ \\ l^2=600 \\ \\ l=10\sqrt{6}[ \\ \\ \implies w=\frac{20}{3}\sqrt{6}[/tex]