f(x)+x4[f(x)]3=2005f(x)+x4[f(x)]3=2005 and f(2)=5f(2)=5, find f′(2)

PLEASE HELP
We went over this in class but she only showed us how to get it to dy/dx and not how to actually get a number I REALLY need help on this!
Calculus is horrible

Respuesta :

[tex]f(x)+x^4f(x)^3=2005[/tex]

Differentiating both sides yields

[tex]\dfrac{\mathrm d}{\mathrm dx}f(x)+\dfrac{\mathrm d}{\mathrm dx}(x^4f(x)^3)=\dfrac{\mathrm d}{\mathrm dx}2005[/tex]

The right hand side is a constant, so the derivative is just 0, and [tex]\dfrac{\mathrm d}{\mathrm dx}f(x)=f'(x)[/tex]. The remaining term requires using the product rule:

[tex]\dfrac{\mathrm d}{\mathrm dx}(x^4f(x)^3)=f(x)^3\dfrac{\mathrm d}{\mathrm dx}x^4+x^4\dfrac{\mathrm d}{\mathrm dx}f(x)^3[/tex]

Using the power rule for the first term here and the power/chain rules for the second gives

[tex]\dfrac{\mathrm d}{\mathrm dx}(x^4f(x)^3)=4x^3f(x)^3+3x^4f(x)^2\dfrac{\mathrm d}{\mathrm dx}f(x)[/tex]
[tex]\dfrac{\mathrm d}{\mathrm dx}(x^4f(x)^3)=4x^3f(x)^3+3x^4f(x)^2f'(x)[/tex]

Putting everything together, you have

[tex]f'(x)+4x^3f(x)^3+3x^4f(x)^2f'(x)=0[/tex]

Collecting the terms with [tex]f'(x)[/tex] gives

[tex](1+3x^4f(x)^2)f'(x)+4x^3f(x)^3=0[/tex]
[tex](1+3x^4f(x)^2)f'(x)=-4x^3f(x)^3[/tex]
[tex]f'(x)=-\dfrac{4x^3f(x)^3}{1+3x^4f(x)^2}[/tex]

Now, finding the value of the derivative at [tex]x=2[/tex] is just a matter of plugging in [tex]x=2[/tex]:

[tex]f'(2)=-\dfrac{4\times2^3f(2)^3}{1+3\times2^4f(2)^2}[/tex]

We know [tex]f(2)=5[/tex], so we get

[tex]f'(2)=-\dfrac{4\times2^3\times5^3}{1+3\times2^4\times5^2}[/tex]
[tex]f'(2)=-\dfrac{4000}{1201}[/tex]