Respuesta :

lukyo

Given the functions

•  g(x) = x² – 3

•  h(x) = x + 1

find  g[ h(x) ].

—————

If  g(x) = x² – 3,  then

g[ h(x) ] = [ h(x) ]² – 3     <———   just replacing x with h(x)

But  h(x) = x + 1,  so

g[ h(x) ] = (x + 1)² – 3   <———   this is already the answer

—————

You could stop at the line above if you want. However, you can also expand that square, so the expression becomes

g[ h(x) ] = (x + 1) · (x + 1) – 3

g[ h(x) ] = (x + 1) · x + (x + 1) · 1 – 3

g[ h(x) ] = x² + 1 · x + x · 1 + 1 · 1 – 3

g[ h(x) ] = x² + x + x + 1 – 3

Now group like terms together, and you finally get:

g[ h(x) ] = x² + 2x – 2   <———   another way to express g[ h(x) ]


I hope this helps. =)


Tags:  composite function polynomial quadratic linear function algebra