Respuesta :

Answer:

The domain of a function is the set of input values for which this function is real.

The range is a set of values for a variable in which the function is defined.

Step-by-step explanation:

Range: [tex]f\left(x\right)\ge \:3[/tex]

Domain: [tex]-\infty \: < x < \infty[/tex]

→ [tex]\bold{Range}\\\sf {If}\:a < 0\:\mathrm{the\:range\:is}\:f\left(x\right)\le \:y_v\\{If}\:a > 0\:\mathrm{the\:range\:is}\:f\left(x\right)\ge \:y_v\\a=2,\:\mathrm{Vertex}\:\left(x_v,\:y_v\right)=\left(1,\:3\right)\\(Minimum~is~1,3)\\Thus,\\f\left(x\right)\ge \:3[/tex]

→ The domain has no constraints, so it is infinite in every way.

Hope this helps.