find domain and range, show work if possible

Answer:
The domain of a function is the set of input values for which this function is real.
The range is a set of values for a variable in which the function is defined.
Step-by-step explanation:
Range: [tex]f\left(x\right)\ge \:3[/tex]
Domain: [tex]-\infty \: < x < \infty[/tex]
→ [tex]\bold{Range}\\\sf {If}\:a < 0\:\mathrm{the\:range\:is}\:f\left(x\right)\le \:y_v\\{If}\:a > 0\:\mathrm{the\:range\:is}\:f\left(x\right)\ge \:y_v\\a=2,\:\mathrm{Vertex}\:\left(x_v,\:y_v\right)=\left(1,\:3\right)\\(Minimum~is~1,3)\\Thus,\\f\left(x\right)\ge \:3[/tex]
→ The domain has no constraints, so it is infinite in every way.
Hope this helps.