Which of the following is a solution to the equation 4x^5+4x^3=360x? (Note: i = root -1)

A) -10
B) -i root 10
C) 10i
D) root 10

Respuesta :

Answer:

[tex]-i\sqrt{10}[/tex]   (-i root 10)

Step-by-step explanation:

1. Rewrite the equation:

[tex]4x^5+4x^3=360x[/tex] | divide by [tex]x[/tex], [tex]x[/tex] is assumed not being zero

[tex]4x^4+4x^2=360[/tex] | rearrange and divide by [tex]4[/tex]

[tex]x^2(x^2+1)=90[/tex]

2. Substitute [tex]-i\sqrt{10}[/tex], to the equation:

[tex](-i\sqrt{10})^2((-i\sqrt{10})^2+1)=90[/tex]

calculate that [tex](-i\sqrt{10})^2=-10[/tex], and substitute to find

[tex]-10*(-10+1)=90[/tex]  

[tex]90=90[/tex], and the equation holds.

3. We can substitute [tex]10i[/tex], [tex]10[/tex] and [tex]\sqrt{10}[/tex], too, and find:

[tex](10i)^2((10i)^2+1)=-100*(-100+1)=9900[/tex]  doesn't equal [tex]90[/tex],

[tex]10^2(10^2+1)=100*(100+1)=10100[/tex], doesn't equal [tex]90[/tex]

[tex]\sqrt{10}^2(\sqrt{10}^2+1)=10*(10+1)=110[/tex] that isn't equal to [tex]90[/tex]