Respuesta :

The cosine model is y = - 7 + 10 · cos (π · x/30 - π).

The sine model is y = - 7 + 10 · sin (π · x/30 - π/2).

How to find sinusoidal functions from a given graph

Sinusoidal functions are periodic trascendent expressions which involves trigonometric functions. There are two kinds of sinusoidal functions:

[tex]y = A \cdot \cos (B\cdot x + C) + D[/tex]     (1)

[tex]y = A\cdot \sin (B\cdot x + C) + D[/tex]      (2)

Where:

  • A - Amplitude
  • B - Angular frecuency
  • C - Angular phase
  • D - Midpoint

First, we find the amplitude and the midpoint:

A = [3 - (- 17)]/2

A = 10

D = [3 + (- 17)]/2

D = - 7

Now we find the angular phase and the angular frequency for each model:

Cosine model (x, y) = (0, - 17), (x, y) = (30, 3)

- 17 = 10 · cos C - 7     (3)

3 = 10 · cos (30 · B + C) - 7      (4)

By (3):

- 10 = 10 · cos C

cos C = - 1

C = acos(- 1)

C = - π

And by (4):

3 = 10 · cos (30 · B - π) - 7

10 = 10 · cos (30 · B - π)

cos (30 · B - π) = 1

30 · B - π = acos 1

30 · B - π = 0

30 · B = π

B = π/30

The cosine model is y = - 7 + 10 · cos (π · x/30 - π).

Sine model

Obtain the sine model by using trigonometric expressions:

cos θ = sin (θ + π/2)     (5)

By (5):

y = - 7 + 10 · sin (π · x/30 - π + π/2)

y = - 7 + 10 · sin (π · x/30 - π/2)

The sine model is y = - 7 + 10 · sin (π · x/30 - π/2).

To learn more on sinusoidal functions: https://brainly.com/question/12060967

#SPJ1