A container contains a mixture of neon and argon gases at a uniform temperature. The argon gas has a rms speed of 1.20 km/s. How many Kelvin would the temperature need to change in order for the neon gas to be 39.0% faster than the rms speed of the argon

Respuesta :

55.44 K is the temperature that need to change in order for the neon gas to be 39.0% faster than the RMS speed of the argon.

Given

RMS speed of argon = 1.20 km/sec = 1.20 ×[tex]10^{3}[/tex] m/sec

RMS speed of neon = 39% faster than the speed of argon

                                 = RMS speed of argon + [tex]\frac{39}{100}[/tex] RMS speed of argon

                                 = RMS speed of argon ( 1 +0.39)

RMS speed of neon = 1.39 times of RMS speed of argon

Hence   [tex]\frac{v_{ne} }{v_{ar} } = \frac{1.39}{1}[/tex] … (1)

The atomic mass of argon is 39.95 g/mol = 39.95×[tex]10^{-3}[/tex] Kg/mol

and  the atomic mass of neon is 20.18 g/mol = 20.18 ×[tex]10^{-3}[/tex] Kg/mol

According to the formula of root-mean-square velocities of gas molecules

[tex]v_{rms} = \sqrt{3RT/M}[/tex] where,

[tex]v_{rms}[/tex] = root-mean-square velocity

M = molar mass of gas (in kg per mole)

R = Molar gas constant = 8.314 J/mol/K

T = temperature (in kelvin)

[tex]v_{arg }[/tex] = [tex]\sqrt{3RT_{arg}/M }[/tex]

[tex]v_{arg} ^{2}[/tex] = [tex]3RT_{arg} /M[/tex]

1.20 ×1.20 ×[tex]10^{6\\[/tex] = 3 ×8.314×[tex]T_{arg}[/tex] /39.95 ×[tex]10^{-3}[/tex]

[tex]T_{arg}[/tex] = 1.44 × 39.95 ×[tex]10^{3}[/tex] / 24.942

[tex]T_{arg}[/tex] = 2306.47 K

Now,

RMS velocity is directly proportional to [tex]\sqrt{T}[/tex] and inversely proportional to [tex]\sqrt{M}[/tex]

[tex]v_{rms}[/tex] [tex]\alpha[/tex] [tex]\sqrt{T}[/tex]   and  [tex]v_{rms} \frac{1}{\alpha } \sqrt{M}[/tex]

[tex]\frac{v_{ne} }{v_{ar} }[/tex] =  [tex]\sqrt{\frac{T_{ne} }{T_{ar} } }[/tex]× [tex]\sqrt{\frac{M_{ar} }{M_{ne} } }[/tex]

According to equation 1

[tex]\sqrt{\frac{T_{ne} }{T_{ar} } }[/tex] × [tex]\sqrt{\frac{M_{ar} }{M_{ne} } }[/tex] = 1.39

[tex]T_{ne}[/tex] = 1.39 ×1.39 × 2306.47 × 20.18 / 39.95

[tex]T_{ne}[/tex] = 2251.03K

Change in temp ΔT = 2306.47-2251.03= 55.44 K

Hence, 55.44 K is the temperature that need to change in order for the neon gas to be 39.0% faster than the RMS speed of the argon.

Learn more about Root-mean-square velocity here https://brainly.com/question/25806742

#SPJ4