Change in Amplitude is 2
Change in Period is π
Transforming sin(x) to [tex]3sin(\frac{2x}{3})[/tex]
y = a(sin(bx+c)) + d
Where, a is Amplitude and [tex]\frac{2}{b}[/tex]π is period
Amplitude of sin(x) =1
Period of sin(x) = 2π
Amplitude of 3sin([tex]\frac{2x}{3}[/tex]) = 3
Period of 3sin([tex]\frac{2x}{3}[/tex]) = [tex]\frac{2}{\frac{2}{3}}[/tex]*π = 3π
Change in Amplitude = 3sin([tex]\frac{2x}{3}[/tex]) - sin(x)
= 3 - 1
= 2
Change in Period = 3sin([tex]\frac{2x}{3}[/tex]) - sin(x)
= 3π - 2π
= π
To learn more about Amplitudes and Periods visit:
https://brainly.com/question/23713359
#SPJ4