Respuesta :

Change in Amplitude is 2

Change in Period is π

Transforming sin(x) to [tex]3sin(\frac{2x}{3})[/tex]

y = a(sin(bx+c)) + d

Where, a is Amplitude and [tex]\frac{2}{b}[/tex]π is period

Amplitude of sin(x) =1

Period of sin(x) = 2π

Amplitude of 3sin([tex]\frac{2x}{3}[/tex]) = 3

Period of 3sin([tex]\frac{2x}{3}[/tex]) = [tex]\frac{2}{\frac{2}{3}}[/tex]*π = 3π

Change in Amplitude = 3sin([tex]\frac{2x}{3}[/tex]) - sin(x)

                                    = 3 - 1

                                    = 2

Change in Period = 3sin([tex]\frac{2x}{3}[/tex]) - sin(x)

                              = 3π - 2π

                               = π

To learn more about Amplitudes and Periods visit:

https://brainly.com/question/23713359

#SPJ4