James states that quadrilateral
formed by A (-1, -3), B (5, 1), C (9, 0),
and D (3,-4) is a parallelogram. Using mathematics, prove that the quadrilateral is a parallelogram

Respuesta :

Using the distance formula,

[tex]AD=\sqrt{(-1-3)^{2}+(-3-(-4))^{2}}=\sqrt{17}\\\\BC=\sqrt{(5-9)^{2}+(1-0)^{2}}=\sqrt{17} \\\\\therefore \overline{AD} \cong \overline{BC}[/tex]

[tex]AB=\sqrt{(-1-5)^{2}+(-3-1)^{2}}=\sqrt{52}=2\sqrt{13}\\\\CD=\sqrt{(9-3)^{2}+(0-(-4))^{2}}=\sqrt{52}=2\sqrt{13}\\\\\therefore \overline{AB} \cong \overline{CD}[/tex]

Since ABCD has two pairs of opposite congruent sides, it is a parallelogram.

Ver imagen Medunno13
Ver imagen Medunno13