contestada

Cácule o limite de:




lim [tex]3^{2n} + 1[/tex]
_____________________
n-∞[tex]4^{n+2} - 3[/tex]




R:∞

Respuesta :

The limit of the expressions [tex]3^{2n} + 1[/tex] and [tex]4^{n + 2} - 3[/tex] for n to infinity is infinity

How to calculate the limits?

The expressions are given as:

[tex]3^{2n} + 1[/tex]

[tex]4^{n + 2} - 3[/tex]

The limits of the expressions as they approach infinity are represented as:

[tex]\lim_{n \to \infty} 3^{2n} + 1[/tex] and [tex]\lim_{n \to \infty} 4^{n + 2} - 3[/tex]

Substitute [tex]\infty[/tex] for n in both expressions

[tex]\lim_{n \to \infty} 3^{2 * \infty} + 1[/tex] and [tex]\lim_{n \to \infty} 4^{\infty + 2} - 3[/tex]

Solve both expressions independently;

[tex]\lim_{n \to \infty} 3^{2n} + 1 = 3^{2 * \infty} + 1[/tex]

Evaluate the product

[tex]\lim_{n \to \infty} 3^{2n} + 1 = 3^{\infty} + 1[/tex]

Evaluate the exponent

[tex]\lim_{n \to \infty} 3^{2n} + 1 = \infty + 1[/tex]

Evaluate the sum

[tex]\lim_{n \to \infty} 3^{2n} + 1 = \infty[/tex]

Also, we have:

[tex]\lim_{n \to \infty} 4^{n + 2} - 3 = 4^{\infty + 2} - 3[/tex]

Evaluate the sum

[tex]\lim_{n \to \infty} 4^{n + 2} - 3 = 4^{\infty} - 3[/tex]

Evaluate the exponent

[tex]\lim_{n \to \infty} 4^{n + 2} - 3 =\infty - 3[/tex]

Evaluate the difference

[tex]\lim_{n \to \infty} 4^{n + 2} - 3 =\infty[/tex]

Hence, the limit of the expressions for n to infinity is infinity

Read more about limits at:

https://brainly.com/question/282767

#SPJ1