Answer:
Exponential model
[tex]y=Ae^{rt}[/tex]
where:
- y = value at "t" time
- A = initial value
- r = rate of growth/decay
- t = time (in years)
Part (a)
Given:
Substituting given values into the formula and solving for A:
[tex]\begin{aligned}y & =Ae^{rt}\\\implies 100 & = Ae^{r \times 0}\\100 & = Ae^0\\100 & = A(1)\\A & = 100\end{aligned}[/tex]
Part (b)
Given:
- A = 100 g
- y = 50 g when t = 30.17
Substituting the given values into the equation and solving for r:
[tex]\begin{aligned}y& =Ae^{rt}\\\\\implies 50 & =100e^{30.17r}\\\\\dfrac{1}{2} & = e^{30.17r}\\\\ln \dfrac{1}{2} & = \ln e^{30.17r}\\\\\ln 1-\ln2 & =30.17r \ln e\\\\0-\ln 2 & =30.17r(1)\\\\-\ln 2 & =30.17r\\\\r & = \dfrac{-\ln 2}{30.17}\end{aligned}[/tex]
Therefore, the final equation is:
[tex]y=100e^{\left(-\dfrac{\ln 2}{30.17}\right)t}[/tex]
Question 1
Part (a)
Q: From 100g how much remains in 80 years?
[tex]\begin{aligned}t=80 \implies y & =100e^{\left(-\dfrac{\ln 2}{30.17}\right)80}\\& = 15.91389949 \: \sf g\end{aligned}[/tex]
Part (b)
Q: How long will it take to have 10% remaining?
10% of 100 g = 10 g
[tex]\begin{aligned}y=10 \implies 10 & =100e^{\left(-\dfrac{\ln 2}{30.17}\right)t}\\\\\dfrac{1}{10} & =e^{\left(-\dfrac{\ln 2}{30.17}\right)t}\\\\\ln \dfrac{1}{10} & =\ln e^{\left(-\dfrac{\ln 2}{30.17}\right)t}\\\\\ln 1 - \ln 10 & =\left(-\dfrac{\ln 2}{30.17}\right)t\ln e\\\\0 - \ln 10 & =\left(-\dfrac{\ln 2}{30.17}\right)t(1)\\\\-\ln 10 & =\left(-\dfrac{\ln 2}{30.17}\right)t\\\\t & = \dfrac{- \ln 10}{\left(-\dfrac{\ln 2}{30.17}\right)}\\\\t & = 100.2225706\: \sf years\end{aligned}[/tex]
Question 2
Part (a)
Q: How much remains after 50 years (time)?
[tex]\begin{aligned}t=50 \implies y & =100e^{\left(-\dfrac{\ln 2}{30.17}\right)50}\\& = 31.70373153 \: \sf g\end{aligned}[/tex]
Part (b)
Q: How long to reach 20 g (amount remaining)?
[tex]\begin{aligned}y=20 \implies 20 & =100e^{\left(-\dfrac{\ln 2}{30.17}\right)t}\\\\\dfrac{1}{5} & =e^{\left(-\dfrac{\ln 2}{30.17}\right)t}\\\\\ln \dfrac{1}{5} & =\ln e^{\left(-\dfrac{\ln 2}{30.17}\right)t}\\\\\ln 1 - \ln 5 & =\left(-\dfrac{\ln 2}{30.17}\right)t\ln e\\\\0 - \ln 5 & =\left(-\dfrac{\ln 2}{30.17}\right)t(1)\\\\-\ln 5 & =\left(-\dfrac{\ln 2}{30.17}\right)t\\\\t & = \dfrac{- \ln 5}{\left(-\dfrac{\ln 2}{30.17}\right)}\\\\t & = 70.05257062\: \sf years\end{aligned}[/tex]