Respuesta :
Answer:
- Length of the rectangle = 18 m
- Width of the rectangle = 7 m
Step-by-step explanation:
Given:
- Area of the Rectangle = 126 m²
- Length of the rectangle is 4 more than 2 times its width.
To Find:
- Length and width
Solution:
Let's assume :
- Width of the rectangle = x
- Length of the recangle = 2x + 4
We know that,
[tex]\: \: \dashrightarrow\sf \: \: \: Length \times Width = Area_{(Rectangle)} \\ \\ [/tex]
On Substituting the required values, we get:
[tex] \\ \: \: \dashrightarrow\sf \: \: \:(2x+ 4)(x) = 126 \\ \\ \\ \: \: \dashrightarrow\sf \: \: \:2 {x}^{2} + 4x = 126 \\ \\ \\ \: \: \dashrightarrow\sf \: \: \:2 {x}^{2} + 4x - 126 =0 \\ \\ \\ \: \: \dashrightarrow\sf \: \: \:2( {x}^{2} + 2x - 63) = 0 \\ \\ \\ \: \: \dashrightarrow\sf \: \: \: {x}^{2} + 2x - 63 = 0 \\ \\ \\ \: \: \dashrightarrow\sf \: \: \: {x}^{2} - 7x + 9x - 63 = 0 \\ \\ \\ \: \: \dashrightarrow\sf \: \: \:x(x - 7) + 9(x - 7) \\ \\ \\ \: \: \dashrightarrow\sf \: \: \:(x - 7)(x + 9) = 0 \\ \\ \\ \: \: \dashrightarrow\sf \: \: \: \purple {x = 7 \: or \: - 9} \\ \\ [/tex]
Length of the side of the rectangle can't be negative. So, x = 7
Hence,
- Width of the rectangle = x = 7 m
- Length of the rectangle = 2x + 4 = 2(7) + 4 = 18 m
Answer:
length = 18 m
width = 7 m
Step-by-step explanation:
Finding the length and width of rectangle
Let the width of the rectangle = w m
Length = ( 2w + 4) m
Area of rectangle = 126 square meters
length * width = 126
(2w + 4) * w = 126
2w² + 4w = 126
2w² + 4w - 126 = 0
Divide the entire equation by 2
w² + 2w - 63 = 0
Sum = 2
Product = -63
Factors = 9 , (-7) { 9 +(-7) = 2 & 9*(-7) = -63}
w² + 9w - 7w - 63 = 0 {rewrite the middle term using the factors}
w( w + 9) - 7(w + 9) =0
(w +9)(w - 7) = 0
{Ignore w +9 = 0, as measurement will not come in negative}
w - 7 = 0
w = 7
length = 2w + 4
= 2*7 + 4
= 14 + 4
= 18