Question : -
[tex] \longrightarrow \frac{x + 2}{3} = \frac{2x - 4}{2} [/tex]
What to Find : -
In this question we have to find the value of x .
Let's Get start Solving : -
[tex]\longrightarrow \frac{x + 2}{3} = \frac{2x - 4}{2} [/tex]
So , by cross multiplying :
[tex] \longrightarrow \: 2(x + 2) = 3(2x - 4)[/tex]
Now , calculation left hand side as well as right hand side :
[tex]\longrightarrow \: 2x + 4 = 6x - 12[/tex]
Now , transposing 6x to left hand side and 4 to right hand side :
[tex]\longrightarrow \: 2x - 6x = - 12 - 4[/tex]
Now , solving left hand side and right hand side :
[tex]\longrightarrow \: - 4x = - 16[/tex]
As negative sign is present on both the side , so it will cancel out :
[tex]\longrightarrow \: \cancel - 4x = \cancel- 16[/tex]
Now we have :
[tex]\longrightarrow \: 4x = 16[/tex]
Now we are transposing 4 to right side and it will change into division from multiplication :
[tex]\longrightarrow \: x = \cancel \frac{16}{4} [/tex]
So we get :
[tex]\longrightarrow \: \green{ \boxed{ \bold x = 4}}[/tex]
- Therefore value of x is 4 .
Verification : -
We are verifying our answer by putting value of x in given question :
[tex]\longrightarrow \frac{4 + 2}{3} = \frac{2(4) - 4}{2} \: [/tex]
Solving ,
[tex]\longrightarrow \: \frac{6}{3} = \frac{8 - 4}{2} [/tex]
Now subtracting 8 and 4 :
[tex]\longrightarrow \: \frac{6}{3} = \frac{4}{2} [/tex]
Now , dividing 6 by 3 and 4 by 2 :
[tex]\longrightarrow \cancel{\frac{6}{3} } = \cancel{\frac{4}{2} }[/tex]
We get :
[tex]\longrightarrow \: \bold{2 = 2}[/tex]
That means ,
[tex]\longrightarrow L.H.S = R.H.S[/tex]
Therefore our answer is correct .
#[tex] \sf{Keep \: Learning}[/tex]