Respuesta :

Answer:

D

Step-by-step explanation:

[tex]\frac{x+2}{3}[/tex] = [tex]\frac{2x-4}{2}[/tex] ( cross- multiply )

3(2x - 4) = 2(x + 2) ← distribute parenthesis on both sides

6x - 12 = 2x + 4 ( subtract 2x from both sides )

4x - 12 = 4 ( add 12 to both sides )

4x = 16 ( divide both sides by 4 )

x = 4

Question : -

[tex] \longrightarrow \frac{x + 2}{3} = \frac{2x - 4}{2} [/tex]

What to Find : -

In this question we have to find the value of x .

Let's Get start Solving : -

[tex]\longrightarrow \frac{x + 2}{3} = \frac{2x - 4}{2} [/tex]

So , by cross multiplying :

[tex] \longrightarrow \: 2(x + 2) = 3(2x - 4)[/tex]

Now , calculation left hand side as well as right hand side :

[tex]\longrightarrow \: 2x + 4 = 6x - 12[/tex]

Now , transposing 6x to left hand side and 4 to right hand side :

[tex]\longrightarrow \: 2x - 6x = - 12 - 4[/tex]

Now , solving left hand side and right hand side :

[tex]\longrightarrow \: - 4x = - 16[/tex]

As negative sign is present on both the side , so it will cancel out :

[tex]\longrightarrow \: \cancel - 4x = \cancel- 16[/tex]

Now we have :

[tex]\longrightarrow \: 4x = 16[/tex]

Now we are transposing 4 to right side and it will change into division from multiplication :

[tex]\longrightarrow \: x = \cancel \frac{16}{4} [/tex]

So we get :

[tex]\longrightarrow \: \green{ \boxed{ \bold x = 4}}[/tex]

  • Therefore value of x is 4 .

Verification : -

We are verifying our answer by putting value of x in given question :

[tex]\longrightarrow \frac{4 + 2}{3} = \frac{2(4) - 4}{2} \: [/tex]

Solving ,

[tex]\longrightarrow \: \frac{6}{3} = \frac{8 - 4}{2} [/tex]

Now subtracting 8 and 4 :

[tex]\longrightarrow \: \frac{6}{3} = \frac{4}{2} [/tex]

Now , dividing 6 by 3 and 4 by 2 :

[tex]\longrightarrow \cancel{\frac{6}{3} } = \cancel{\frac{4}{2} }[/tex]

We get :

[tex]\longrightarrow \: \bold{2 = 2}[/tex]

That means ,

[tex]\longrightarrow L.H.S = R.H.S[/tex]

  • Hence Verified .

Therefore our answer is correct .

#[tex] \sf{Keep \: Learning}[/tex]