Respuesta :

Function: y = 3sin(2x) - 1

Find y-intercept:

  • y = 3sin(2x) - 1
  • y =  3sin(2(0)) - 1
  • y = -1

Formula for minimum: m = A ‐ |B|

Minimum:

  • -1 - |3|
  • -4

=========

When y = -4

  • 3sin(2x) - 1 = -4
  • 3sin(2x) = -3
  • sin(2x) = -1
  • 2x = sin⁻¹(-1)
  • 2x =-450°, -90°, 270°, 630°
  • x = -225°, -45°, 135°, 315°

Formula for maximum: M = A + |B|

Maximum:

  • -1 + |3|
  • 2

=========

When y = 2

  • 3sin(2x) - 1 = 2
  • sin(2x) = 1
  • 2x = sin⁻¹(1)
  • 2x = -630°, -270°, 90°, 450°
  • x = -315°, -135°, 45°, 225°

Now we can plot the graph for the equation in range of -360° < x < 360°

For more graphing problems: brainly.com/question/27117441

Ver imagen fieryanswererft

Answer:

[tex]y=A\sin(B(x+C))+D[/tex]

Amplitude = A

The height from the center line to the peak (or trough).

Period = (2π)/B

The horizontal distance from one peak to the next.

Phase shift = C

How far the function is shifted horizontally from its usual position.
(positive is to the left, negative is to the right).

Vertical shift = D

How far the function is shifted vertically from its usual position.

Parent function:

[tex]y=\sin(x)[/tex]

Therefore:

  • Amplitude = 1
  • Period = 2π
  • Phase shift = none
  • Vertical shift = none

Given function:

[tex]y=3\sin(2x)-1[/tex]

[tex]y=3\sin(2(x+0))-1[/tex]

Therefore:

  • Amplitude = 3
  • Period = π
  • Phase shift = none
  • Vertical shift = -1

**See attached images for how the parent function is transformed to the final function**

Ver imagen semsee45
Ver imagen semsee45
Ver imagen semsee45
Ver imagen semsee45