Respuesta :
Function: y = 3sin(2x) - 1
Find y-intercept:
- y = 3sin(2x) - 1
- y = 3sin(2(0)) - 1
- y = -1
Formula for minimum: m = A ‐ |B|
Minimum:
- -1 - |3|
- -4
=========
When y = -4
- 3sin(2x) - 1 = -4
- 3sin(2x) = -3
- sin(2x) = -1
- 2x = sin⁻¹(-1)
- 2x =-450°, -90°, 270°, 630°
- x = -225°, -45°, 135°, 315°
Formula for maximum: M = A + |B|
Maximum:
- -1 + |3|
- 2
=========
When y = 2
- 3sin(2x) - 1 = 2
- sin(2x) = 1
- 2x = sin⁻¹(1)
- 2x = -630°, -270°, 90°, 450°
- x = -315°, -135°, 45°, 225°
Now we can plot the graph for the equation in range of -360° < x < 360°
For more graphing problems: brainly.com/question/27117441

Answer:
[tex]y=A\sin(B(x+C))+D[/tex]
Amplitude = A
The height from the center line to the peak (or trough).
Period = (2π)/B
The horizontal distance from one peak to the next.
Phase shift = C
How far the function is shifted horizontally from its usual position.
(positive is to the left, negative is to the right).
Vertical shift = D
How far the function is shifted vertically from its usual position.
Parent function:
[tex]y=\sin(x)[/tex]
Therefore:
- Amplitude = 1
- Period = 2π
- Phase shift = none
- Vertical shift = none
Given function:
[tex]y=3\sin(2x)-1[/tex]
[tex]y=3\sin(2(x+0))-1[/tex]
Therefore:
- Amplitude = 3
- Period = π
- Phase shift = none
- Vertical shift = -1
**See attached images for how the parent function is transformed to the final function**



