Respuesta :

Answer:

[tex] \frac{1}{ \sqrt{2} } [/tex]

Step-by-step explanation:

Given

[tex]theta = 22 \frac{1}{2} = \frac{45}{2} [/tex]

[tex]2 \times theta = \frac{45}{2} \times 2 = 45[/tex]

Sin2theta=sin45⁰=1/√2

[tex] \frac{1}{ \sqrt{2} } [/tex]

is your answer

Answer:

[tex]\sf \dfrac{\sqrt{2}}{2}[/tex]

Step-by-step explanation:

[tex]\sf If\:\theta=\left(22\dfrac12\right)^{\circ}[/tex]

[tex]\sf \implies2\theta=2\cdot\left(22\dfrac12\right)^{\circ}=45^{\circ}[/tex]

[tex]\sf Therefore\:\sin2\theta=\sin(45)^{\circ}=\dfrac{\sqrt{2}}{2}[/tex]

Proof

If a right triangle has an interior angle of 45°, then the third interior angle will also be 45° (since the sum of the interior angles of a triangle is 180°).

This means that the two legs of the right triangle are equal in length.

Using Pythagoras' Theorem, we can state that the hypotenuse of a right triangle with two legs of equal length will be √2 times the length of a leg.

Let a = b = 1

⇒ 1² + 1² = c²

⇒ c = √2

The sine trig ratio is:

[tex]\mathsf{\sin(\theta)=\dfrac{O}{H}}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • H is the hypotenuse

[tex]\implies \sf \sin(45^{\circ})=\dfrac{1}{\sqrt{2} }[/tex]

[tex]\implies \sf \dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}[/tex]

[tex]\implies \sf \sin(45^{\circ})=\dfrac{\sqrt{2}}{2}[/tex]