Respuesta :

point-slope form:

  • y - y₁ = m(x-x₁)

slope intercept form:

  • y = mx + b

Equation:

[tex]\sf \hookrightarrow y-6 = \dfrac{3}{5} (x-5)[/tex]               [tex]\sf [ \ this \ is \ point \ slope \ form \ equation \ ][/tex]

[tex]\sf \hookrightarrow y-6 = \dfrac{3}{5} x-3[/tex]                               ----------------

[tex]\sf \hookrightarrow y= \dfrac{3}{5} x-3+6[/tex]                                        -------------------

[tex]\sf \hookrightarrow y= \dfrac{3}{5} x+3[/tex]                         [tex]\sf [ \ this \ is \ slope \ intercept \ form \ equation \ ][/tex]

Ver imagen fieryanswererft

Answer:

[tex]\boxed{y - 6 = \dfrac{3}{5} (x - 5)}[/tex]

Step-by-step explanation:

Given:

  • Line passes through: (5,6)
  • Slope = 3/5 = 0.6

Formula:

  • [tex]y - y_{1} = m(x - x_{1} ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\text{m = Slope}; \ (x_1},y_{1}) = \text{Coordinates of point}][/tex]

Substitute the values into point slope form to determine the equation of the line in point slope form.

[tex]\implies y - y_{1} = m(x - x_{1} )[/tex]

[tex]\implies \boxed{y - 6 = \dfrac{3}{5} (x - 5)}[/tex]