Respuesta :
point-slope form:
- y - y₁ = m(x-x₁)
slope intercept form:
- y = mx + b
Equation:
[tex]\sf \hookrightarrow y-6 = \dfrac{3}{5} (x-5)[/tex] [tex]\sf [ \ this \ is \ point \ slope \ form \ equation \ ][/tex]
[tex]\sf \hookrightarrow y-6 = \dfrac{3}{5} x-3[/tex] ----------------
[tex]\sf \hookrightarrow y= \dfrac{3}{5} x-3+6[/tex] -------------------
[tex]\sf \hookrightarrow y= \dfrac{3}{5} x+3[/tex] [tex]\sf [ \ this \ is \ slope \ intercept \ form \ equation \ ][/tex]

Answer:
[tex]\boxed{y - 6 = \dfrac{3}{5} (x - 5)}[/tex]
Step-by-step explanation:
Given:
- Line passes through: (5,6)
- Slope = 3/5 = 0.6
Formula:
- [tex]y - y_{1} = m(x - x_{1} ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\text{m = Slope}; \ (x_1},y_{1}) = \text{Coordinates of point}][/tex]
Substitute the values into point slope form to determine the equation of the line in point slope form.
[tex]\implies y - y_{1} = m(x - x_{1} )[/tex]
[tex]\implies \boxed{y - 6 = \dfrac{3}{5} (x - 5)}[/tex]