Respuesta :

Answer:

[tex]\csc(u).sec(u)[/tex]

Step-by-step explanation:

[tex] \tan(u)+ \cot(u) \\ \\ = \frac{ \sin(u)}{ \cos(u)} + \frac{ \cos(u)}{ \sin(u)} \\ \\ = \frac{ { \sin}^{2} (u) + {\cos}^{2} (u)}{ \sin(u). \cos(u)} \\ \\ = \frac{1}{ \sin(u). \cos(u)} \\ ( \because \: { \sin}^{2} ( \theta) + {\cos}^{2} ( \theta) = 1) \\ \\ = \frac{1}{\sin(u)} \times \frac{1}{\cos(u)} \\ \\ = \csc(u).sec(u) \\ \\ \implies \: \purple{ \bold{ \tan(u)+ \cot(u) = \csc(u).sec(u)}}[/tex]