Answer:
[tex]\displaystyle (f\circ g)(-1) = 5[/tex]
Step-by-step explanation:
We are given the two functions:
[tex]\displaystyle f(x) = 2x + 3\text{ and } g(x) = -3x - 2[/tex]
And we want to find:
[tex]\displaystyle (f\circ g)(-1)[/tex]
Recall that this is equivalent to:
[tex]\displaystyle (f\circ g)(-1) = f(g(-1))[/tex]
Hence, find g(-1):
[tex]\displaystyle \begin{aligned} g(x) & = -3x - 2\\ \\ g(-1) & = -3(-1) - 2\\ \\ & = (3) - 2 \\ \\ & = 1 \end{aligned}[/tex]
Substitute:
[tex]\displaystyle f(g(-1)) = f(1)[/tex]
Find f(1):
[tex]\displaystyle \begin{aligned} f(x) & = 2x+ 3 \\ \\ f(1) & = 2(1) + 3 \\ \\ & = 5\end{aligned}[/tex]
In conclusion:
[tex]\displaystyle (f\circ g)(-1) = 5[/tex]