First rewrite the equation in slope intercept form
slope intercept form: y = mx + b [ where m is slope and b is y-intercept ]
[tex]\sf \rightarrow 5x - 3y = 18[/tex]
[tex]\sf \rightarrow - 3y = 18-5x[/tex]
[tex]\sf \rightarrow y = \dfrac{-5x+18}{-3}[/tex]
[tex]\sf \rightarrow y = \dfrac{-5x}{-3} + \dfrac{18}{-3}[/tex]
[tex]\sf \rightarrow y = \dfrac{5}{3}x -6[/tex]
comparing with y = mx + b, Here we can identify that the
- slope: [tex]\sf \frac{5}{3}[/tex] and y-intercept: [tex]\sf -6[/tex]
x-intercept: ( then y will be 0 )
[tex]\sf \hookrightarrow \dfrac{5}{3}x -6=0[/tex]
[tex]\sf \hookrightarrow \dfrac{5}{3}x=6[/tex]
[tex]\sf \hookrightarrow x=\dfrac{18}{5}[/tex]
[tex]\sf \hookrightarrow x = 3.6[/tex]
In order to graph the line
- First put the x = 3.6 in the x axis
- Secondly put y = -6 in the y axis
- Then using a scale/ruler draw a straight line through this points.
Graph: