Respuesta :
Answer:
16.3 ft
Explanation:
circumference of circle = 2πr ( r is the radius )
Here radius = 2.6 ft
Circumference:
- 2 * π * 2.6
- 5.2 π
- 16.3 ft
Digram :
[tex] \setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\put(0,0){\line(1,0){2.3}}\put(0.5,0.3){\bf\large 2.6ft\ cm}\end{picture}[/tex]
[tex] \\ \\ [/tex]
Given :
- radius of circle = 2.6 ft
[tex] \\ \\ [/tex]
To find :
- Circumference = ?
[tex] \\ \\ [/tex]
Solution :-
We know :
[tex] \boxed{ \rm Circumference_{(\sf circle)} = 2\pi \: radius}[/tex]
[tex] \\ [/tex]
So:-
[tex] \dashrightarrow\sf Circumference_{(\sf circle)} = 2\pi \: radius \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Circumference_{(\sf circle)} = 2 \times \dfrac{22}{7} \times 2.6\\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Circumference_{(\sf circle)} = 2 \times \dfrac{22}{7} \times \dfrac{26}{10} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Circumference_{(\sf circle)} =\dfrac{44}{7} \times \dfrac{26}{10} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Circumference_{(\sf circle)} =\dfrac{1144}{7 \times 10} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Circumference_{(\sf circle)} =\dfrac{1144}{70} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\bf Circumference_{(\bf circle)} =16.34~ft\{approx\} \\ [/tex]