contestada

The radius of a circle is 2.6 ft. Find the circumference
to

the

nearest

tenth
to the nearest tenth.

Respuesta :

Answer:

16.3 ft

Explanation:

circumference of circle = 2πr       ( r is the radius )

Here radius = 2.6 ft

Circumference:

  • 2 * π * 2.6
  • 5.2 π
  • 16.3 ft

Digram :

[tex] \setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\put(0,0){\line(1,0){2.3}}\put(0.5,0.3){\bf\large 2.6ft\ cm}\end{picture}[/tex]

[tex] \\ \\ [/tex]

Given :

  • radius of circle = 2.6 ft

[tex] \\ \\ [/tex]

To find :

  • Circumference = ?

[tex] \\ \\ [/tex]

Solution :-

We know :

[tex] \boxed{ \rm Circumference_{(\sf circle)} = 2\pi \: radius}[/tex]

[tex] \\ [/tex]

So:-

[tex] \dashrightarrow\sf Circumference_{(\sf circle)} = 2\pi \: radius \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf Circumference_{(\sf circle)} = 2 \times \dfrac{22}{7} \times 2.6\\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf Circumference_{(\sf circle)} = 2 \times \dfrac{22}{7} \times \dfrac{26}{10} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf Circumference_{(\sf circle)} =\dfrac{44}{7} \times \dfrac{26}{10} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf Circumference_{(\sf circle)} =\dfrac{1144}{7 \times 10} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf Circumference_{(\sf circle)} =\dfrac{1144}{70} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\bf Circumference_{(\bf circle)} =16.34~ft\{approx\} \\ [/tex]